Isolasi, Identifikasi, dan Uji Potensi Bakteri Laut sebagai Agen Bioremediasi Logam Berat Kromium (Cr)

Nasywa Fajriatun Nisa Suparman, Endah Retnaningrum

Abstract


ABSTRAK

 

Pencemaran air oleh logam berat terjadi akibat perkembangan industri seperti tekstil, electroplating, dan penyamakan kulit. Kromium (Cr) merupakan salah satu logam berat yang dihasilkan dengan tingkat toksisitas tinggi bagi makhluk hidup bahkan dalam konsentrasi rendah. Upaya penanggulangan yang ramah lingkungan dilakukan dengan metode bioremediasi dapat memanfaatkan kemampuan bakteri resisten logam berat. Penelitian ini bertujuan untuk mengisolasi, mengidentifikasi, dan melakukan uji potensi reduksi logam berat kromium oleh bakteri laut resisten kromium. Penelitian ini menggunakan bahan sampel air laut, pasir Pantai Samas dan Pantai Pandansimo, media kultur Zobell marine broth 2216, serta logam berat K2Cr2O7. Langkah awal penelitian dilakukan dengan pengambilan sampel air laut dan pasir pantai. Selanjutnya dilakukan isolasi, seleksi, karakterisasi morfologi sel dan biokimia serta identifikasi bakteri resisten kromium untuk diuji potensi reduksinya. Hasil tiga isolat terseleksi memiliki kemampuan resistensi tertinggi terhadap kromium. Proses identifikasi menunjukkan bahwa dua isolat, yaitu PSAA1 dan SMCS21 diduga merupakan anggota genus Proteus, sedangkan satu isolat PSAA8 diduga merupakan anggota genus Micrococcus. Ketiga isolat bakteri PSAA8, SMCS21, dan PSAA1 menunjukkan kemampuan reduksi kromium dengan efisiensi reduksi secara berurutan sebesar 22.54%, 21.54%, dan 18.44%. Sehingga ketiga isolat bakteri laut disimpulkan memiliki potensi sebagai agen bioremediasi untuk mengurangi konsentrasi logam berat kromium dari lingkungan perairan.

 

Kata kunci: Bakteri Laut, bioremediasi, kromium, Micrococcus, Proteus

 

ABSTRACT

 

Water pollution by heavy metals occurs as a result of industrial developments such as textiles, electroplating and leather tanning. Chromium (Cr) is one of the heavy metals that is produced with a high level of toxicity to living things even in low concentrations. Environmentally friendly countermeasures carried out by the bioremediation method can utilize the ability of heavy metal resistant bacteria. This study aims to isolate, identify, and test the potential reduction of chromium heavy metal by chromium-resistant marine bacteria. This study used seawater samples, sand from Samas Beach and Pandansimo Beach, culture media Zobell marine broth 2216, and heavy metal K2Cr2O7 solution. The initial step of the research was carried out by taking samples of seawater and beach sand. Furthermore, isolation, selection, morphological, cell and biochemical characterization were carried out as well as identification of chromium resistant bacteria to test their reduction potential. The results of the three selected isolates had the highest resistance ability to chromium. The identification process showed that two isolates, namely PSAA1 and SMCS21 were suspected to be members of the genus Proteus, while one isolate PSAA8 was suspected to be a member of the genus Micrococcus. The three bacterial isolates PSAA8, SMCS21, and PSAA1 showed the ability to reduce chromium with reduction efficiencies of 22.54%, 21.54%, and 18.44% respectively. So that the three marine bacterial isolates were concluded to have potential as bioremediation agents to reduce the concentration of the heavy metal chromium from the aquatic environment.

 

Keywords:  Bioremediation, chromium, marine Bacteria, Micrococcus, Proteus


Keywords


bakteri laut; bioremediasi; Kromium; Micrococcus; Proteus; bioremediation; chromium; marine bacteria

Full Text:

PDF

References


Abatenh, E., Gizaw, B., Tsegaye, Z., & Wassie, M. (2017). The Role of Microorganisms in Bioremediation-A Review. Open Journal of Environmental Biology, 1(1), 38–46. https://doi.org/10.17352/ojeb.000007.

Anderson, R. A. (1997). Chromium as an Essential Nutrient for Humans. Regulatory Toxicology and Pharmacology, 26, S35–S41. https://doi.org/10.1006/rtph.1997.1136.

Ayangbenro, A. S., & Babalola, O. O. (2017). A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. International Journal of Environmental Research and Public Health, 14(1), 94. https://doi.org/10.3390/ijerph14010094.

Cappuccino, J. G., & Welsh, C. (2017). Microbiology: A Laboratory Manual (Eleventh edition). London: Pearson.

Cervantes, C., Campos-García, J., Devars, S., Gutiérrez-Corona, F., Loza-Tavera, H., Torres-Guzmán, J. C., & Moreno-Sánchez, R. (2001). Interactions of Chromium with Microorganisms and Plants. FEMS Microbiology Reviews, 25(3), 335–347. https://doi.org/10.1111/j.1574-6976.2001.tb00581.x.

Chug, R., Gour, V. S., Mathur, S., & Kothari, S. L. (2016). Optimization of Extracellular Polymeric Substances Production Using Azotobacter beijreinckii and Bacillus subtilis and Its Application in Chromium (VI) Removal. Bioresource Technology, 214, 604–608. https://doi.org/10.1016/j.biortech.2016.05.010.

Ge, S., Dong, X., Zhou, J., & Ge, S. (2013). Comparative Evaluations on Bio-Treatment of Hexavalent Chromate by Resting Cells of Pseudochrobactrum sp. And Proteus sp. In Wastewater. Journal of Environmental Management, 126, 7–12. https://doi.org/10.1016/j.jenvman.2013.04.011.

Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., & Williams, S. T. (1994). Bergey’s Manual of Determinative Bacteriology Ninth edition (Ninth Edition). Philadelphia: Lippincott Williams & Wilkins.

Igiri, B. E., Okoduwa, S. I. R., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., & Ejiogu, I. K. (2018). Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. Journal of Toxicology, 2018, e2568038. https://doi.org/10.1155/2018/2568038.

Imron, M. F., & Purwanti, I. F. (2016). Uji Kemampuan Bakteri Azotobacter S8 dan Bacillus subtilis untuk Menyisihkan Trivalent Chromium (Cr3+) pada Limbah Cair. Jurnal Teknik ITS, 5(1). https://doi.org/10.12962/j23373539.v5i1.14854.

Iyer, A., Mody, K., & Jha, B. (2005). Biosorption of Heavy Metals by a Marine Bacterium. Marine Pollution Bulletin, 50(3), 340–343. https://doi.org/10.1016/j.marpolbul.2004.11.012.

Jeyakumar, P., Debnath, C., Vijayaraghavan, R., & Muthuraj, M. (2023). Trends in Bioremediation of Heavy Metal Contaminations. Environmental Engineering Research, 28(4), 220631. https://doi.org/10.4491/eer.2021.631.

Jhunjhunwala, P., Roy, R., Roy, S., & Chaudhuri, A. N. (2016). Bioremediation of Chromium by Unique Chromium Reductase Activity in Proteus sp. Isolated from Waste Water. International Journal of Applied Research, 2(11), 249–256.

Kanmani, P., Aravind, J., & Preston, D. (2012). Remediation of Chromium Contaminants Using Bacteria. International Journal of Environmental Science and Technology, 9, 183–193. https://doi.org/10.1007/s13762-011-0013-7.

Kulkarni, P., & Bee, H. (2015). Marine-Bacteria Actinomycetes: A Case Study for Their Potential in Bioremediation. Biotechnological Research, 1(3), 171-174. http://br.biomedpress.org/index.php/br/article/view/704.

Luka, Y., Highina, B. K., & Zubairu, A. (2018). Bioremediation- A Solution to Environmental Pollution-A Review. American Journal of Engineering Research, 7(2), 101–109.

Madhuri, R. J., Saraswathi, M., Gowthami, K., Bhargavi, M., Divya, Y., & Deepika, V. (2019). Chapter 19—Recent Approaches in the Production of Novel Enzymes from Environmental Samples by Enrichment Culture and Metagenomic Approach. In V. Buddolla (Ed.), Recent Developments in Applied Microbiology and Biochemistry (pp. 251–262). Amsterdam: Academic Press. https://doi.org/10.1016/B978-0-12-816328-3.00019-2.

Maier, R. M., Pepper, I. L., & Gerba, C. P. (Eds.). (2009). Environmental microbiology (second ed). Amsterdam: Elsevier/Academic Press.

Marzan, L. W., Hossain, M., Mina, S. A., Akter, Y., & Chowdhury, A. M. M. A. (2017). Isolation and Biochemical Characterization of Heavy-Metal Resistant Bacteria from Tannery Effluent in Chittagong City, Bangladesh: Bioremediation Viewpoint. The Egyptian Journal of Aquatic Research, 43, 65–74. https://doi.org/10.1016/j.ejar.2016.11.002.

Mistry, K., Desai, C., Lal, S., Patel, K., & Patel, B. (2010). Hexavalent Chromium Reduction by Staphylococcus sp. Isolated from Cr (VI) Contaminated Land Fill. International Journal of Biotechnology and Biochemistry, 6(1), 117–129. https://www.researchgate.net/publication/52006736_Hexavalent_Chromium_Reduction_by_Staphylococcus_Sp_Isolated_From_Cr_Vi_Contaminated_Land_Fill.

Munawaroh, H. S. H., Gumilar, G. G., Nandiyanto, A. B. D., Kartikasari, S., Kusumawaty, D., & Hasanah, L. (2017). Microbial Reduction of Cr (VI) in to Cr (III) by Locally Isolated Pseudomonas aeruginosa. IOP Conference Series: Materials Science and Engineering, 180, 012296. https://doi.org/10.1088/1757-899X/180/1/012296.

Naik, M. M., Pandey, A., & Dubey, S. K. (2012). Bioremediation of Metals Mediated by Marine Bacteria. In Anil Prakash, T. Satyanarayana, & B. N. Johri (Eds.), Microorganisms in Environmental Management (pp. 665–682). Springer Netherlands. https://doi.org/10.1007/978-94-007-2229-3_29.

Nguema, P. F., & Luo, Z. (2012). Aerobic Chromium (VI) Reduction by Chromium-Resistant Bacteria Isolated from Activated Sludge. Annals of Microbiology, 62, 41–47. https://doi.org/10.1007/s13213-011-0224-7.

Penttinen, R., Hoikkala, V., & Sundberg, L.-R. (2018). Gliding Motility and Expression of Motility-Related Genes in Spreading and Non-spreading Colonies of Flavobacterium columnare. Frontiers in Microbiology, 9, 525. https://doi.org/10.3389/fmicb.2018.00525.

Priyadarshanee, M., & Das, S. (2021). Biosorption and Removal of Toxic Heavy Metals by Metal Tolerating Bacteria for Bioremediation of Metal Contamination: A Comprehensive Review. Journal of Environmental Chemical Engineering, 9(1), 104686. https://doi.org/10.1016/j.jece.2020.104686.

Rida, B., Yrjälä, K., & Hasnain, S. (2012). Hexavalent Chromium Reduction by Bacteria from Tannery Effluent. Journal of Microbiology and Biotechnology, 22(4), 547–554. https://doi.org/10.4014/jmb.1108.08029.

Singh, N., Verma, T., & Gaur, R. (2013). Detoxification of Hexavalent Chromium by An Indigenous Facultative Anaerobic Bacillus Cereus Strain Isolated from Tannery Effluent. African Journal of Biotechnology, 12(10), 1091–1103. https://doi.org/10.5897/AJB12.1636

Sparling, D. W. (2016). Ecotoxicology Essentials: Environmental Contaminants and Their Biological Effects on Animals and Plants. Amsterdam: Elsevier/AP, Academic Press is an imprint of Elsevier.

Srinath, T., Verma, T., Ramteke, P. W., & Garg, S. K. (2002). Chromium (VI) Biosorption and Bioaccumulation by Chromate Resistant Bacteria. Chemosphere, 48(4), 427–435. https://doi.org/10.1016/S0045-6535(02)00089-9.

Willey, J. M., Sherwood, L., Woolverton, C. J., & Prescott, L. M. (2009). Prescott’s principles of microbiology (1st ed). New York: McGraw-Hill Higher Education.

Yamina, B., Tahar, B., & Marie Laure, F. (2012). Isolation and Screening of Heavy Metal Resistant Bacteria from Wastewater: A Study of Heavy Metal Co-Resistance and Antibiotics Resistance. Water Science and Technology, 66(10), 2041–2048. https://doi.org/10.2166/wst.2012.355.

Yanti, D. H., Nursyirwani, N., & Yoswaty, D. (2021). Isolation and Identification of Bacteria from Dumai Marine Waters that Have Potencial as Lead Bioremediation Agents. Journal of Coastal and Ocean Sciences, 2(3), 217–222. https://doi.org/10.31258/jocos.2.3.217-222.




DOI: http://dx.doi.org/10.21776/ub.jsal.2023.010.03.3

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Sumberdaya Alam dan Lingkungan