Sintesis dan Karakterisasi Al-MCM-41 dari Kaolin Bangka Belitung sebagai Sumber Silika dan Alumina
Abstract
ABSTRAK
Al-MCM-41 adalah material padatan berpori yang tersusun dari silika amorf, memiliki struktur membentuk susunan heksagonal dengan ukuran pori antara 2-50 nm, sehingga dikategorikan sebagai material mesopori. Dalam pembuatan Al-MCM-41 membutuhkan sumber silika dan alumina yang tinggi sebagai bahan pembuatannya, sehingga dibutuhkan bahan yang kaya akan kedua senyawa tersebut sebagai bahan alternatif dalam pembuatan Al-MCM-41. Rumus formula kaolin adalah Al4(Si4O10)(OH)8 dengan komponen mineral utamanya adalah SiO2 dan Al2O3 Kaolin yang digunakan berasal dari bangka belitung dengan kandungan SiO2 sebesar 61% dan Al2O3 sebesar 31%, kandungan SiO2 dan Al2O3 yang cukup tinggi dimanfaatkan sebagai bahan pada sintesis material aluminosilikat seperti Al-MCM-41. Sintesis Al-MCM-41 dari kaolin dilakukan dengan metode hidrotermal. pH yang digunakan sebesar 10, dengan suhu 80°C selama 12 jam pada proses hidrotermalnya. Al-MCM-41 hasil sintesis dianalisa menggunakan XRD dan FTIR dimana pada analisa XRD sudut pendek menunjukkan 3 puncak pada 2θ= 2.237°, 3.921°, 4.449° dan XRD sudut panjang pada 2θ= 21.449°. Analisa FTIR untuk Al-MCM-41 menunjukkan pita serapan pada bilangan gelombang 436.49; 802.47; 1146.41; 1630.61; 3389.79 cm-1.
Kata kunci: Al-MCM-41, hidrotermal, lempung, mesopori, pH
ABSTRACT
Al-MCM-41 is a porous solid material composed of amorphous silica, has a structure forming a hexagonal array with a pore size between 2-50 nm, so it is categorized as a mesoporous material. The manufacture of Al-MCM-41 requires a high source of silica and alumina as materials, so materials rich in both compounds are needed as the development of materials used in the manufacture of Al-MCM-41. Kaolin (Al4(Si4O10)(OH)8) is a white clay mineral, the main minerals are SiO2 and Al2O3. The kaolin used comes from bangka belitung with a SiO2 content of 61% and Al2O3 of 31%, the high content of SiO2 and Al2O3 is utilized as an ingredient in the synthesis of aluminosilicate materials such as Al-MCM-41. The synthesis of Al-MCM-41 from kaolin was carried out by hydrothermal method. The pH used was 10, with a temperature of 80°C for 12 hours in the hydrothermal process. The synthesized Al-MCM-41 was analyzed using XRD and FTIR where the short angle XRD analysis showed 3 peaks at 2θ = 2.237°, 3.921°, 4.449° and long angle XRD at 2θ = 21.449°. FTIR analysis for Al-MCM-41 showed absorption bands at wave numbers 436.49; 802.47; 1146.41; 1630.61; 3389.79 cm-1.
Keywords: Al-MCM-41, clay, hydrothermal, kaolin, mesopore, pH
Keywords
Full Text:
PDFReferences
Abdullahi, Y., Ali, E. A., & Lawal, A. O. (2013). Roast-alkaline leaching of silica from kaolinitic clay. ARPN Journal of Engineering and Applied Sciences, 8(10), 864–870.
Ahda, M., Sutarno, S., & Kunarti, E. S. (2013). Sintesis Silika Mcm-41 Dan Uji Kapasitas Adsorpsi Terhadap Metilen Biru. Pharmaciana, 3(1). https://doi.org/10.12928/pharmaciana.v3i1.414
Ali, A. M., Yahya, N., Mijinyawa, A., Kwaya, M. Y., & Sikiru, S. (2020). Molecular simulation and microtextural characterization of quartz dissolution in sodium hydroxide. Journal of Petroleum Exploration and Production Technology, 10(7), 2669–2684. https://doi.org/10.1007/s13202-020-00940-2
Azka Kamila, R. (2021). Kaolin in Pharmaceutical Preparations: A Review Review: Kaolin Sebagai Bahan Sediaan Farmasi. Jurnal Ilmiah Farmasi (Scientific Journal of Pharmacy), 17(2), 145–159. http://journal.uii.ac.id/index.php/JIF
Cai, Q., Lin, W. Y., Xiao, F. S., Pang, W. Q., Chen, X. H., & Zou, B. S. (1999). The preparation of highly ordered MCM-41 with extremely low surfactant concentration. Microporous and Mesoporous Materials, 32(1–2), 1–15. https://doi.org/10.1016/S1387-1811(99)00082-7
Castillo, R. R., De La Torre, L., García-Ochoa, F., Ladero, M., & Vallet-Regí, M. (2020). Production of MCM-41 nanoparticles with control of particle size and structural properties: Optimizing operational conditions during scale-up. International Journal of Molecular Sciences, 21(21), 1–18. https://doi.org/10.3390/ijms21217899
Danny Wibowo, Ivy Yuniata, Andriana Ateng, S. I. (2004). Sintesa Nanoporus Material. Jurnal Teknik Kimia Indonesia, 3, 1050110.
Dewi, R., Agusnar, H., Alfian, Z., & Tamrin. (2020). Physicochemical characterization of natural kaolin from jaboi indonesia. Rasayan Journal of Chemistry, 13(1), 382–388. https://doi.org/10.31788/RJC.2020.1315523
Eftekhari, A. (2017). Ordered mesoporous materials for lithium-ion batteries. Microporous and Mesoporous Materials, 243, 355–369. https://doi.org/10.1016/j.micromeso.2017.02.055
Hartono, S. B. (2017). Pembuatan, Modifikasi dan Pemanfaatan Material Nano-Pori. Ilmiah Widya Teknik, 16(1), 54–57.
Hasanah, N., Sutarno, S., & Kunarti, E. S. (2018). Characteristic Study of the MCM-41 Modified with Zn by Direct Synthesis. JKPK (Jurnal Kimia Dan Pendidikan Kimia), 3(3), 183. https://doi.org/10.20961/jkpk.v3i3.22808
Hermida, L., Lestari, I., & Agustian, J. (2020). Silika Berpori dari Kaolin Alam Lampung dan Kajian Aplikasinya terhadap Adsorpsi Rhodamin B. Jurnal Unikom, 24–32.
Khalifah, S. N., Aini, Z. N., Hayati, E. K., Aini, N., & Prasetyo, A. (2018). Synthesis and characterization of mesoporous NaY zeolite from natural Blitar’s kaolin. IOP Conference Series: Materials Science and Engineering, 333(1). https://doi.org/10.1088/1757-899X/333/1/012005
Kong, J., Park, S. S., & Ha, C. S. (2022). pH-Sensitive Polyacrylic Acid-Gated Mesoporous Silica Nanocarrier Incorporated with Calcium Ions for Controlled Drug Release. Materials, 15(17), 1–20. https://doi.org/10.3390/ma15175926
Li, C., Li, Z., Wu, T., Luo, Y., Zhao, J., & Li, X. (2021). Metallogenic characteristics and formation mechanism of naomugeng clay-type lithium deposit in central inner mongolia, china. Minerals, 11(3), 1–19. https://doi.org/10.3390/min11030238
Nugraha, R. E., Prasetyoko, D., Asikin-Mijan, N., Bahruji, H., Suprapto, S., Taufiq-Yap, Y. H., & Jalil, A. A. (2021). The effect of structure directing agents on micro/mesopore structures of aluminosilicates from Indonesian kaolin as deoxygenation catalysts. Microporous and Mesoporous Materials, 315(October 2020), 110917. https://doi.org/10.1016/j.micromeso.2021.110917
Ojo, G., Igbokwe, U., Egbuachor, C., & Nwozor, K. (2017). Geotechnical properties and geochemical composition of kaolin deposits in parts of ifon, southwestern Nigeria. American Journal of Engineering Research (AJER), 6(3), 15–24.
Pasi, N. I., Bratadireja, M. A., & Chaerunnisa, A. Y. (2020). Study of Physicochemical Characteristics of Kaolin from Belitung Regency. Indonesian Journal of Pharmaceutical Science and Technology, 7(2), 38. https://doi.org/10.24198/ijpst.v7i2.25675
Salahudeen, N., Nasiru, A., Ahmed, A., Dauda, M., Waziri, S., Okonkwo, P., & Isa, M. (2015). Chemical and Physical Comparative Study of the Effect of Wet and Dry Beneficiation of Kankara Kaolin. Nigerian Journal of Technology, 34(2), 297. https://doi.org/10.4314/njt.v34i2.13
Schwartzentruber, J., Fürst, W., & Renon, H. (1987). Dissolution of quartz into dilute alkaline solutions at 90°C: A kinetic study. Geochimica et Cosmochimica Acta, 51(7), 1867–1874. https://doi.org/10.1016/0016-7037(87)90177-3
Setiadi, A. (2016). Sintesis Zeolit Dengan Kandungan Si/Al Rendah Dari Kaolin Menggunakan Metode Peleburan Dan Hidrotermal. Indonesian Journal of Chemical Science, 5(3), 164–168.
Shu, Z., Li, T., Zhou, J., Chen, Y., Yu, D., & Wang, Y. (2014). Template-free preparation of mesoporous silica and alumina from natural kaolinite and their application in methylene blue adsorption. Applied Clay Science, 102, 33–40. https://doi.org/10.1016/j.clay.2014.10.006
Sun, X. M., Chen, X., Deng, Z. X., & Li, Y. D. (2002). A CTAB-assisted hydrothermal orientation growth of ZnO nanorods. 78, 99–104.
Sunardi. (2016). Kajian Spektroskopi Ftir, Xrd Dan Sem Kaolin Alam Asal Tatakan, Kalimantan Selatan Hasil Purifikasi Dengan Metode Sedimentasi. Sains Dan Terapan Kimia, 4(2), 137–149.
Tchakoute, H. K., Rüscher, C. H., Djobo, J. N. Y., Kenne, B. B. D., & Njopwouo, D. (2015). Influence of gibbsite and quartz in kaolin on the properties of metakaolin-based geopolymer cements. Applied Clay Science, 107, 188–194. https://doi.org/10.1016/j.clay.2015.01.023
Yahaya, S., Jikan, S. S., Badarulzaman, N. A., & Adamu, A. D. (2017). Chemical Composition and Particle Size Analysis of Kaolin. Path of Science, 3(10), 1001–1004. https://doi.org/10.22178/pos.27-1
DOI: http://dx.doi.org/10.21776/ub.jsal.2024.011.02.5
Refbacks
- There are currently no refbacks.
Copyright (c) 2024