Karakterisasi dan Evalusasi Kinerja Ekstrak Tanin dari Daun Teh (Camellia sinensis L.) Terimobilisasi pada Lempung Aktif (Activated Clay) untuk Penyisihan Kromium Heksavalen
Abstract
ABSTRAK
Produksi teh di Indonesia mencapai 144.1 ton/tahun pada 2020, dengan asumsi sekitar 1-2% menjadi limbah, terdapat banyak limbah teh yang perlu digali pontensinya untuk dimanfaatkan. Teh memiliki kandungan senyawa-senyawa aktif, termasuk tanin. Tanin merupakan senyawa fenol yang dapat menyisihkan logam berat salah satunya kromium heksavalen. Penelitian ini dilakukan untuk melihat karakteristik tanin terimobilisasi pada lempung dan kinerjanya dalam penyisihan kromium heksavalen. Penelitian dilakukan secara eksperimental menggunakan variasi konsentrasi limbah artifisial 10, 40, 70, dan 100 ppm dengan variasi waktu kontak 15, 30, 60, 120, dan 180 menit dengan dosis 6 g.L-1. Dari hasil pengujian Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) menunjukkan bahwa partikel adsorben lempung aktif sesudah pengontakan cenderung lebih besar dibandingkan sebelum perlakuan karena adanya ikatan dengan unsur-unsur. Hasil experiment menunjukkan, efektivitas penyisihan tertinggi didapatkan pada konsentrasi 100 ppm dengan waktu kontak 180 menit yaitu 68.816 ppm dengan kapasitas penyerapan mencapai 1.147 mg.g-1. Sedangkan efisiensi penyisihan terbesar pada konsentrasi 10 ppm dengan waktu kontak 180 menit sebesar 99.271%. Model isoterm adsorpsi yang sesuai dengan penelitian ini adalah model isoterm Langmuir dan model kinetika adsorpsi mengikuti ordo pertama pada konsentrasi 70 dan 100 ppm dan ordo kedua pada konsentrasi 10 dan 40 ppm.
Kata kunci: adsorpsi, kromium heksavalen, tanah liat, tanin, teh
ABSTRACT
Tea production in Indonesia reached 144.1 tons/year in 2020. Assuming that around 1–2% becomes waste, a significant amount of tea waste exists that has potential to be utilized. Tea is a commodity that contains active compounds, including tannins. Tannins are phenolic compounds that can remove heavy metals, one of which is hexavalent chromium. This study was conducted to examine the characteristics of immobilized tannins on clay and their performance in removing hexavalent chromium. The research was carried out experimentally using variations of artificial wastewater concentrations at 10, 40, 70, and 100 ppm, with contact times of 15, 30, 60, 120, and 180 minutes, and a dosage of 6 g.L-1. Results from Scanning Electron Microscope–Energy Dispersive X-ray (SEM-EDX) analysis showed that the size of the activated clay adsorbent particles after contact tended to be larger than before treatment due to bonding with certain elements. The results showed that the highest removal effectiveness was achieved at a concentration of 100 ppm with a contact time of 180 minutes, resulting in 68.816 ppm removed which equal to sorption capacity of 1.147 mg.g-1. Meanwhile, the highest removal efficiency was obtained at a concentration of 10 ppm with a contact time of 180 minutes, reaching 99.271%. The adsorption isotherm model that best fits this study is the Langmuir isotherm model, and the adsorption kinetics followed a first-order model at concentrations of 70 and 100 ppm, and a second-order model at concentrations of 10 and 40 ppm.
Keywords: adsorption, chromium hexavalent, clay, tannin, tea
Keywords
Full Text:
PDFReferences
Badan Pusat Statistik. (2021). statistik-teh-indonesia-2020.
Bajpai, A. K., & Sachdeva, R. (2002). Immobilization of diastase onto acid-treated bentonite clay surfaces. Colloid and Polymer Science, 280(10), 892–899. https://doi.org/10.1007/s00396-002-0699-7
BSN. (2009). Air dan air limbah - bagian 71: Cara uji krom heksavalen (Cr-VI) dalam contoh uji secara spektrofotometri.
Deepa, A., Mastan, A., Buddolla, V., Kumar, Y. A., Lakshmi, B. A., & Kim, Y. J. (2025). Bioremediation approaches for chromium detoxification and transformation: Advanced strategies and future Perspectives. In International Biodeterioration and Biodegradation (Vol. 196). Elsevier Ltd. https://doi.org/10.1016/j.ibiod.2024.105951
He, X., & Li, P. (2020). Surface Water Pollution in the Middle Chinese Loess Plateau with Special Focus on Hexavalent Chromium (Cr6+): Occurrence, Sources and Health Risks. Exposure and Health, 12(3), 385–401. https://doi.org/10.1007/s12403-020-00344-x
Ifthikar, J., Shahib, I. I., Jiang, W., Senthilnithy, R., Elkhlifi, Z., Wang, J., & Chen, Z. (2023). Review on technologies for the development of effective and practical chromate removal from wastewaters. In Journal of Environmental Chemical Engineering (Vol. 11, Issue 5). Elsevier Ltd. https://doi.org/10.1016/j.jece.2023.110735
Khan, A., Wang, X., Gul, K., Khuda, F., Aly, Z., & Elseman, A. M. (2018). Microwave-assisted spent black tea leaves as cost-effective and powerful green adsorbent for the efficient removal of Eriochrome black T from aqueous solutions. Egyptian Journal of Basic and Applied Sciences, 5(2), 171–182. https://doi.org/https://doi.org/10.1016/j.ejbas.2018.04.002
Kurniawati, S., Nurjazuli, & Raharjo, M. (2017). Risiko Kesehatan Lingkungan Pencemaran Logam Berat Kromium Heksavalen (Cr VI) pada Ikan Nila (Oreochromis niloticus) di Aliran Sungai Garang Kota Semarang. Higiene, 3, 152–160.
Maiti, S., Neogi, S., & Dutta, B. K. (2023). Remediation and immobilization of Cr(VI)-contaminated soil using stabilized nanoscale iron sulfide and ecological impact. Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.2023.e15009
Peng, H., & Guo, J. (2020). Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review. In Environmental Chemistry Letters (Vol. 18, Issue 6, pp. 2055–2068). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s10311-020-01058-x
Rajapaksha, A. U., Selvasembian, R., Ashiq, A., Gunarathne, V., Ekanayake, A., Perera, V. O., Wijesekera, H., Mia, S., Ahmad, M., Vithanage, M., & Ok, Y. S. (2022). A systematic review on adsorptive removal of hexavalent chromium from aqueous solutions: Recent advances. Science of The Total Environment, 809, 152055. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.152055
Saha, R., Nandi, R., & Saha, B. (2011). Sources and toxicity of hexavalent chromium. In Journal of Coordination Chemistry (Vol. 64, Issue 10, pp. 1782–1806). https://doi.org/10.1080/00958972.2011.583646
Sanjaya, A. S., & Agustine, R. P. (2015). Studi Kinetika Adsorpsi Pb Menggunakan Arang Aktif dari Kulit Pisang. Konversi, 4(1), 17. https://doi.org/10.20527/k.v4i1.261
Shang, Y., Zhu, G., Yan, D., Liu, Q., Gao, T., & Zhou, G. (2021). Tannin cross-linked polyethyleneimine for highly efficient removal of hexavalent chromium. Journal of the Taiwan Institute of Chemical Engineers, 119, 52–59. https://doi.org/https://doi.org/10.1016/j.jtice.2021.02.009
Sharma, P., Singh, S. P., Parakh, S. K., & Tong, Y. W. (2022). Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. In Bioengineered (Vol. 13, Issue 3, pp. 4923–4938). Taylor and Francis Ltd. https://doi.org/10.1080/21655979.2022.2037273
Sivalingam, S., & Gopal, V. (2024). Low-cost adsorbent from biomass for removal of Fe(II) and Mn(II) for water treatment: batch and column adsorption study. Chemical Papers, 78(8), 4891–4908. https://doi.org/10.1007/s11696-024-03438-x
Taksitta, K., Sujarit, P., Ratanawimarnwong, N., Donpudsa, S., & Songsrirote, K. (2020). Development of tannin-immobilized cellulose fiber extracted from coconut husk and the application as a biosorbent to remove heavy metal ions. Environmental Nanotechnology, Monitoring & Management, 14, 100389. https://doi.org/https://doi.org/10.1016/j.enmm.2020.100389
Tumolo, M., Ancona, V., De Paola, D., Losacco, D., Campanale, C., Massarelli, C., & Uricchio, V. F. (2020). Chromium pollution in European water, sources, health risk, and remediation strategies: An overview. In International Journal of Environmental Research and Public Health (Vol. 17, Issue 15, pp. 1–25). MDPI AG. https://doi.org/10.3390/ijerph17155438
Ullah, I., Nadeem, R., Iqbal, M., & Manzoor, Q. (2013). Biosorption of chromium onto native and immobilized sugarcane bagasse waste biomass. Ecological Engineering, 60, 99–107. https://doi.org/https://doi.org/10.1016/j.ecoleng.2013.07.028
Zhang, Y., Ma, J., Miao, J., Yue, L., Cheng, M., Li, Y., & Jing, Z. (2023). Self-regulated immobilization behavior of multiple heavy metals via zeolitization towards a novel hydrothermal technology for soil remediation. Environmental Research, 216, 114726. https://doi.org/https://doi.org/10.1016/j.envres.2022.114726
DOI: http://dx.doi.org/10.21776/ub.jsal.2025.012.01.7
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Luhur Akbar Devianto, Reynold Tantra Tan, Evi Kurniati, Fajri Anugroho