Bioakumulasi dan Aktivitas Resistensi Logam Timbal (Pb) terhadap Streptomyces sp. strain I18
Abstract
ABSTRAK
Kegiatan antropogenik secara intensif mengakibatkan pencemaran lingkungan yang disebabkan oleh logam berat. Timbal (Pb) merupakan salah satu logam berat toksik. Tingkat toksisitas dapat diturunkan melalui proses bioakumulasi oleh mikroorganisme. Penelitian ini dilakukan untuk mengetahui kemampuan bakteri Streptomyves sp. strain I18 dalam mengakumulasi logam Pb. Bakteri diidentifikasi morfologi secara makroskopik dan mikroskopik. Daya resistensi bakteri terhadap logam Pb ditentukan dengan menumbuhkan bakteri pada media Muller-Hilton Agar yang disuplementasi Pb pada konsentrasi 5, 50, dan 150 ppm menggunakan metode dilusi pada cawan petri petri. Bioakumulasi bakteri terhadap logam Pb diukur menggunakan Atomic Absorption Spectroscopy (AAS) pada konsentrasi 5, 50, dan 150 ppm. Bakteri Streptomyves sp. strain I18 mampu tumbuh pada media padat agar mengandung logam Pb pada bagai konsentrasi dengan diameter koloni terbesar, yakni 50.33 mm pada konsentrasi Pb 5 ppm. Pertumbuhan koloni terkecil sebesar 33.00 mm terjadi pada konsentrasi 150 ppm. Bakteri ini terbukti mampu mengakumulasi logam Pb dengan akumulasi terbesar pada konsentrasi 5 ppm, sebesar 49%. Peningkatan konsentrasi logam menurunkan kemampuan akumulasi logam Pb. Pada konsentrasi 150 ppm dan 50 ppm, bakteri hanya mampu mengakumulasi Pb sebesar 5% dan 9%. Kemampuan optimal bakteri Streptomyves sp. strain I18 sebagai bioakumulator diperkirakan pada konsentrasi kurang dari 50 ppm.
Kata kunci: bioakumulasi, Pb, resistensi, Streptomyces
ABSTRACT
Antropogenic activity intensively can cause environmental pollution by heavy metals. Lead is one of toxic heavy metal. Level of toxicity can be decreased with bioaccumulation by microorganisms. This research conducted to know the ability of bacteria Streptomyces sp. strain I18 to accumulate lead. The morphological of bacteria was identified by microscopic and macroscopic. Bacterial resistance of lead has been known by growing bacterial in Muller-Hilton Agar supplemented lead in concentration 5, 50, and 150 ppm uses dilution plate method. Biaccumulation of bacteria against lead measured by Atomic Absorption Spectroscopy (AAS). Streptomyces sp. strain I18 can grow in solid agar media contains lead in various concentration. The highest diameter of colony 50.33 mm measured in media combined lead concentration 5 ppm. The lowest growth of colony is 33.00 mm in lead concentration of 1000 ppm. These bacteria are proven that can accumulate lead with the highest accumulation reached 49% in concentration of 5 ppm. The concentration of 150 and 50 ppm can accumulate lead reached 5% and 9%. Optimal ability of bacteria Streptomyces sp. strain I18 as bioaccumulator supposed in concentration of less than 50 ppm.
Keywords: bioaccumulation, lead, resistance, Streptomyces
Keywords
Full Text:
PDFReferences
Akbar, R. A., Ryandini, D., & Kusharyati, D. F. (2017). Potensi Aktinomisetes Asal Tanah Perakaran Mangrove Segara Anakan Cilacap Sebagai Penghasil Antifungi Terhadap Yeast Patogen Candida albicans. Journal of Tropical Biodiversity and Biotechnology, 2(2), 39-44.
Al-Saadi, A., & Mohammad Jaralla, E. (2013). Isolation and Identification of Streptomyces from Different Sample of Soils. Journal of Biology and Medical Sciences -JBMS An Open Access International Journal Published by University of Babylon Iraq, 1, 31–36.
Arifiyanto, A., Apriyanti, F. D., Purwaningsih, P., Kalqutny, S. H., Agustina, D., Surtiningsih, T., Shovitri, M., & Zulaika, E. (2017). Lead (Pb) bioaccumulation; Genera Bacillus isolate S1 and SS19 as a case study. AIP Conference Proceedings. 1854: 1-6.
Baker, M. R., Coutelot, F. M., & Seaman, J. C. (2019). Phosphate amendments for chemical immobilization of uranium in contaminated soil. Environment International, 129(June), 565–572.
Jacob, J., Rajendran, R. U., Priya, S. H., Purushothaman, J., & Saraswathy Amma, D. K. B. N. (2017). Enhanced antibacterial metabolite production through the application of statistical methodologies by a Streptomyces nogalater NIIST A30 isolated from Western Ghats forest soil. PLoS ONE, 12(4), 1–21.
Kaduková, J., & Virčíková, E. (2005). Comparison of differences between copper bioaccumulation and biosorption. Environment International, 31(2), 227–232.
Plouffe, G., Bulle, C., & Deschênes, L. (2015). Case study: Taking zinc speciation into account in terrestrial ecotoxicity considerably impacts life cycle assessment results. Journal of Cleaner Production, 108, 1002–1008.
Putri, M. H., Handayani, K., Setiawan, W. A., Damayanti, B., Ratih, C. L., & Arifiyanto, A. (2021). Screening of Extracellular Enzymes on Serratia marcescens strain MBC1. Jurnal Riset Biologi Dan Aplikasinya, 3(1), 23-29.
Rho, J. Y., & Kim, J. H. (2002). Heavy metal biosorption and its significance to metal tolerance of streptomycetes. Journal of Microbiology, 40(1), 51–54.
Romero, M. C., H. Reinoso, E., Urrutia, M. I., & Moreno Kiernan, A. (2006). Biosorption of heavy metals by Talaromyces helicus: a trained fungus for copper and biphenyl detoxification. Electronic Journal of Biotechnology, 9(3):21-26.
Sedlakova-Kadukova, J., A. Kopcakova, L. Gresakova, A. Godany, P. Pristas. (2019). Bioaccumulation and biosorption of zinc by a novel
Lestari, et al. Jurnal Sumberdaya Alam dan Lingkungan
Volume 9 Nomor 1 : 1-6 https://doi.org/10.21776/ub.jsal.2022.009.01.1
Streptomyces K11 strain isolated from highly alkaline aluminium brown mud disposal site. Ecotoxicology and Environmental Safety, 167, 204-211.
Soraia, E. B., Mohamed, B., M., B., Lahcen, H., A., E. G., & B., I. (2015). Resistance to and accumulation of heavy metals by actinobacteria isolated from abandoned mining areas. Scientific World Journal, 2015, 1–14.
Suthindhiran, K., & Kannabiran, K. (2009). Cytotoxic and antimicrobial potential of actinomycete species Saccharopolyspora salina VITSDK4 isolated from the bay of Bengal coast of India. American Journal of Infectious Diseases, 5(2), 90–98.
Thavasi, R., Subramanyam Nambaru, V. R. M., Jayalakshmi, S., Balasubramanian, T., & Banat, I. M. (2009). Biosurfactant production by Azotobacter chroococcum isolated from the marine environment. Marine Biotechnology, 11(5), 551–556.
Timková, I., Sedláková-Kaduková, J., & Pristaš, P. (2018). Biosorption and bioaccumulation abilities of actinomycetes/streptomycetes isolated from metal contaminated sites. Separations, 5(4): 54
Veneu, D. M., Torem, M. L., & Pino, G. A. H. (2013). Fundamental aspects of copper and zinc removal from aqueous solutions using a Streptomyces lunalinharesii strain. Minerals Engineering, 48, 44–50.
Volskey, B. (2013). Sorption and Biosorption (1st ed.). BV Sorbex.
DOI: http://dx.doi.org/10.21776/ub.jsal.2022.009.01.1
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Jurnal Sumberdaya Alam dan Lingkungan