Advancing Fauna Conservation through Machine Learning-Based Spectrogram Recognition: A Study on Object Detection using YOLOv5

Badrul Huda Husain, Takahiro Osawa




The protection and monitoring of fauna species are essential for maintaining biodiversity and ensuring the sustainability of ecosystems. Traditional methods of fauna conservation and habitat monitoring rely heavily on manual observation and data collection, which can be time-consuming, and labor-intensive. In recent years, the application of machine learning techniques, such as object detection, has shown great potential in automating the identification of fauna species. In this study, we propose an approach to advancing fauna conservation through the utilization of machine learning-based spectrogram recognition. Specifically, we employ an object detection algorithm, YOLOv5, to detect and classify fauna species from spectrogram images obtained from acoustic recordings. The spectrograms provide a visual representation of audio signals, capturing distinct patterns and characteristics unique to different fauna species. Through extensive experimentation and evaluation, our approach achieved promising results, demonstrating a precision of 0.95, recall of 0.98, F1 score of 0.91, and mean Average Precision (mAP) of 0.934. These performance metrics indicate a high level of accuracy and reliability in fauna species detection. By automating the identification process, our approach provides a scalable solution for monitoring fauna populations over large geographical areas and enables the collection of comprehensive data, facilitating better decision-making and targeted conservation strategies.


Keywords: acoustic recording, fauna conservation, machine learning, spectrogram, YOLOv5


Acoustic Recording; Fauna Conservation; Machine Learning; Spectrogram; YOLOv5

Full Text:



Alamhashmi, M., Ibrahim, M., Bajwa, I., Siddiqui, H. U. R., Rustam, F., Lee, E., & Ashraf, I. (2022). Railway Track Inspection Using Deep Learning Based on Audio to Spectrogram Conversion: An on-the-Fly Approach. Sensors, 22(5).

Angelstam, P., Bush, T., & Manton, M. (2023). Challenges and Solutions for Forest Biodiversity Conservation in Sweden: Assessment of Policy, Implementation Outputs, and Consequences. Land, 12(5).

Arifando, R., Eto, S., & Wada, C. (2023). Improved YOLOv5-Based Lightweight Object Detection Algorithm for People with Visual Impairment to Detect Buses. Applied Sciences (Switzerland), 13(9).

Benocci, R., Asnaghi, E., Bisceglie, A., Lavorano, S., Galli, P., Roman, H. E., & Zambon, G. (2022). Method for Assessing the Soundscape in a Marine Artificial Environment. Sustainability (Switzerland), 14(16).

Binta Islam, S., Valles, D., Hibbitts, T. J., Ryberg, W. A., Walkup, D. K., & Forstner, M. R. J. (2023). Animal Species Recognition with Deep Convolutional Neural Networks from Ecological Camera Trap Images. Animals, 13(9).

Dalton, D. T., Berger, V., Adams, V., Botha, J., Halloy, S., Kirchmeir, H., Sovinc, A., Steinbauer, K., Švara, V., & Jungmeier, M. (2023). A Conceptual Framework for Biodiversity Monitoring Programs in Conservation Areas. Sustainability (Switzerland), 15(8).

Hoy, R. A., & Brereton, J. E. (2022). Does Observer Presence Modify the Behavior and Enclosure Use of Captive Edwards’ Pheasants? Journal of Zoological and Botanical Gardens, 3(2), 147–157.

Jung, H. K., & Choi, G. S. (2022). Improved YOLOv5: Efficient Object Detection Using Drone Images under Various Conditions. Applied Sciences (Switzerland), 12(14).

Kim, J. H., Kim, N., Park, Y. W., & Won, C. S. (2022). Object Detection and Classification Based on YOLO-V5 with Improved Maritime Dataset. Journal of Marine Science and Engineering, 10(3).

Musvuugwa, T., Dlomu, M. G., & Adebowale, A. (2021). Big Data in Biodiversity Science: A Framework for Engagement. In Technologies (Vol. 9, Issue 3). MDPI.

Mutanu, L., Gohil, J., Gupta, K., Wagio, P., & Kotonya, G. (2022). A Review of Automated Bioacoustics and General Acoustics Classification Research. Sensors, 22(21).

Prosekov, A., Kuznetsov, A., Rada, A., & Ivanova, S. (2020). Methods for monitoring large terrestrial animals in the wild. In Forests (Vol. 11, Issue 8). MDPI AG.

Ravaglia, D., Ferrario, V., De Gregorio, C., Carugati, F., Raimondi, T., Cristiano, W., Torti, V., Hardenberg, A. Von, Ratsimbazafy, J., Valente, D., Giacoma, C., & Gamba, M. (2023). There You Are! Automated Detection of Indris’ Songs on Features Extracted from Passive Acoustic Recordings. Animals, 13(2).

Sharma, S., Sato, K., & Gautam, B. P. (2023). A Methodological Literature Review of Acoustic Wildlife Monitoring Using Artificial Intelligence Tools and Techniques. Sustainability, 15(9), 7128.

Stephenson, P. J., Londoño-Murcia, M. C., Borges, P. A. V., Claassens, L., Frisch-Nwakanma, H., Ling, N., McMullan-Fisher, S., Meeuwig, J. J., Unter, K. M. M., Walls, J. L., Burfield, I. J., do Carmo Vieira Correa, D., Geller, G. N., Montenegro Paredes, I., Mubalama, L. K., Ntiamoa-Baidu, Y., Roesler, I., Rovero, F., Sharma, Y. P., … Fumagalli, L. (2022). Measuring the Impact of Conservation: The Growing Importance of Monitoring Fauna, Flora and Funga. In Diversity (Vol. 14, Issue 10). MDPI.

Taye, M. M. (2023). Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions. In Computers (Vol. 12, Issue 5). MDPI.

Woods, J. M., Eyer, A., & Miller, L. J. (2022). Bird Welfare in Zoos and Aquariums: General Insights across Industries. Journal of Zoological and Botanical Gardens, 3(2), 198–222.

Yang, R., Li, W., Shang, X., Zhu, D., & Man, X. (2023). KPE-YOLOv5: An Improved Small Target Detection Algorithm Based on YOLOv5. Electronics (Switzerland), 12(4).

Zhang, Y., Ma, C., Zhuo, L., & Li, J. (2023). Arbitrary-Oriented Object Detection in Aerial Images with Dynamic Deformable Convolution and Self-Normalizing Channel Attention. Electronics (Switzerland), 12(9).



Copyright (c) 2023 Jurnal Sumberdaya Alam dan Lingkungan