Advancing Fauna Conservation through Machine Learning-Based Spectrogram Recognition: A Study on Object Detection using YOLOv5
Abstract
ABSTRACT
The protection and monitoring of fauna species are essential for maintaining biodiversity and ensuring the sustainability of ecosystems. Traditional methods of fauna conservation and habitat monitoring rely heavily on manual observation and data collection, which can be time-consuming, and labor-intensive. In recent years, the application of machine learning techniques, such as object detection, has shown great potential in automating the identification of fauna species. In this study, we propose an approach to advancing fauna conservation through the utilization of machine learning-based spectrogram recognition. Specifically, we employ an object detection algorithm, YOLOv5, to detect and classify fauna species from spectrogram images obtained from acoustic recordings. The spectrograms provide a visual representation of audio signals, capturing distinct patterns and characteristics unique to different fauna species. Through extensive experimentation and evaluation, our approach achieved promising results, demonstrating a precision of 0.95, recall of 0.98, F1 score of 0.91, and mean Average Precision (mAP) of 0.934. These performance metrics indicate a high level of accuracy and reliability in fauna species detection. By automating the identification process, our approach provides a scalable solution for monitoring fauna populations over large geographical areas and enables the collection of comprehensive data, facilitating better decision-making and targeted conservation strategies.
Keywords: acoustic recording, fauna conservation, machine learning, spectrogram, YOLOv5
Keywords
Full Text:
PDFReferences
Alamhashmi, M., Ibrahim, M., Bajwa, I., Siddiqui, H. U. R., Rustam, F., Lee, E., & Ashraf, I. (2022). Railway Track Inspection Using Deep Learning Based on Audio to Spectrogram Conversion: An on-the-Fly Approach. Sensors, 22(5). https://doi.org/10.3390/s22051983
Angelstam, P., Bush, T., & Manton, M. (2023). Challenges and Solutions for Forest Biodiversity Conservation in Sweden: Assessment of Policy, Implementation Outputs, and Consequences. Land, 12(5). https://doi.org/10.3390/land12051098
Arifando, R., Eto, S., & Wada, C. (2023). Improved YOLOv5-Based Lightweight Object Detection Algorithm for People with Visual Impairment to Detect Buses. Applied Sciences (Switzerland), 13(9). https://doi.org/10.3390/app13095802
Benocci, R., Asnaghi, E., Bisceglie, A., Lavorano, S., Galli, P., Roman, H. E., & Zambon, G. (2022). Method for Assessing the Soundscape in a Marine Artificial Environment. Sustainability (Switzerland), 14(16). https://doi.org/10.3390/su141610359
Binta Islam, S., Valles, D., Hibbitts, T. J., Ryberg, W. A., Walkup, D. K., & Forstner, M. R. J. (2023). Animal Species Recognition with Deep Convolutional Neural Networks from Ecological Camera Trap Images. Animals, 13(9). https://doi.org/10.3390/ani13091526
Dalton, D. T., Berger, V., Adams, V., Botha, J., Halloy, S., Kirchmeir, H., Sovinc, A., Steinbauer, K., Švara, V., & Jungmeier, M. (2023). A Conceptual Framework for Biodiversity Monitoring Programs in Conservation Areas. Sustainability (Switzerland), 15(8). https://doi.org/10.3390/su15086779
Hoy, R. A., & Brereton, J. E. (2022). Does Observer Presence Modify the Behavior and Enclosure Use of Captive Edwards’ Pheasants? Journal of Zoological and Botanical Gardens, 3(2), 147–157. https://doi.org/10.3390/jzbg3020012
Jung, H. K., & Choi, G. S. (2022). Improved YOLOv5: Efficient Object Detection Using Drone Images under Various Conditions. Applied Sciences (Switzerland), 12(14). https://doi.org/10.3390/app12147255
Kim, J. H., Kim, N., Park, Y. W., & Won, C. S. (2022). Object Detection and Classification Based on YOLO-V5 with Improved Maritime Dataset. Journal of Marine Science and Engineering, 10(3). https://doi.org/10.3390/jmse10030377
Musvuugwa, T., Dlomu, M. G., & Adebowale, A. (2021). Big Data in Biodiversity Science: A Framework for Engagement. In Technologies (Vol. 9, Issue 3). MDPI. https://doi.org/10.3390/technologies9030060
Mutanu, L., Gohil, J., Gupta, K., Wagio, P., & Kotonya, G. (2022). A Review of Automated Bioacoustics and General Acoustics Classification Research. Sensors, 22(21). https://doi.org/10.3390/s22218361
Prosekov, A., Kuznetsov, A., Rada, A., & Ivanova, S. (2020). Methods for monitoring large terrestrial animals in the wild. In Forests (Vol. 11, Issue 8). MDPI AG. https://doi.org/10.3390/F11080808
Ravaglia, D., Ferrario, V., De Gregorio, C., Carugati, F., Raimondi, T., Cristiano, W., Torti, V., Hardenberg, A. Von, Ratsimbazafy, J., Valente, D., Giacoma, C., & Gamba, M. (2023). There You Are! Automated Detection of Indris’ Songs on Features Extracted from Passive Acoustic Recordings. Animals, 13(2). https://doi.org/10.3390/ani13020241
Sharma, S., Sato, K., & Gautam, B. P. (2023). A Methodological Literature Review of Acoustic Wildlife Monitoring Using Artificial Intelligence Tools and Techniques. Sustainability, 15(9), 7128. https://doi.org/10.3390/su15097128
Stephenson, P. J., Londoño-Murcia, M. C., Borges, P. A. V., Claassens, L., Frisch-Nwakanma, H., Ling, N., McMullan-Fisher, S., Meeuwig, J. J., Unter, K. M. M., Walls, J. L., Burfield, I. J., do Carmo Vieira Correa, D., Geller, G. N., Montenegro Paredes, I., Mubalama, L. K., Ntiamoa-Baidu, Y., Roesler, I., Rovero, F., Sharma, Y. P., … Fumagalli, L. (2022). Measuring the Impact of Conservation: The Growing Importance of Monitoring Fauna, Flora and Funga. In Diversity (Vol. 14, Issue 10). MDPI. https://doi.org/10.3390/d14100824
Taye, M. M. (2023). Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions. In Computers (Vol. 12, Issue 5). MDPI. https://doi.org/10.3390/computers12050091
Woods, J. M., Eyer, A., & Miller, L. J. (2022). Bird Welfare in Zoos and Aquariums: General Insights across Industries. Journal of Zoological and Botanical Gardens, 3(2), 198–222. https://doi.org/10.3390/jzbg3020017
Yang, R., Li, W., Shang, X., Zhu, D., & Man, X. (2023). KPE-YOLOv5: An Improved Small Target Detection Algorithm Based on YOLOv5. Electronics (Switzerland), 12(4). https://doi.org/10.3390/electronics12040817
Zhang, Y., Ma, C., Zhuo, L., & Li, J. (2023). Arbitrary-Oriented Object Detection in Aerial Images with Dynamic Deformable Convolution and Self-Normalizing Channel Attention. Electronics (Switzerland), 12(9). https://doi.org/10.3390/electronics12092132
DOI: http://dx.doi.org/10.21776/ub.jsal.2023.010.02.2
Refbacks
Copyright (c) 2023 Jurnal Sumberdaya Alam dan Lingkungan